A family of thermostable fungal cellulases created by structure-guided recombination

Pete Heinzelmana, Christopher D. Snowa, Indira Wua, Catherine Nguyena, Alan Villalobosb, Sridhar Govindarajanb, Jeremy Minshullb, and Frances H. Arnolda,1

aDivision of Chemistry and Chemical Engineering 210-41, California Institute of Technology, Pasadena, CA 91125; and bDNA2.0, Menlo Park, CA 94025

Contributed by Frances H. Arnold, February 9, 2009 (sent for review January 19, 2009)

SCHEMA structure-guided recombination of 3 fungal class II cellobiohydrolases (CBH II cellulases) has yielded a collection of highly thermostable CBH II chimeras. Twenty-three of 48 genes sampled from the 6,561 possible chimeric sequences were secreted by the Saccharomyces cerevisiae heterologous host in catalytically active form. Five of these chimeras have half-lives of thermal inactivation at 63 °C that are greater than the most stable parent, CBH II enzyme from the thermophilic fungus Humicola insolens, which suggests that this chimera collection contains hundreds of highly stable cellulases. Twenty-five new sequences were designed based on mathematical modeling of the thermostabilities for the first set of chimeras. Ten of these sequences were expressed in active form; all 10 retained more activity than H. insolens CBH II after incubation at 63 °C. The total of 15 validated thermostable CBH II enzymes have high sequence diversity, differing from their closest natural homologs at up to 63 amino acid positions. Selected purified thermostable chimeras hydrolyzed phosphoric acid swollen cellulose at temperatures 7 to 15 °C higher than the parent enzymes. These chimeras also hydrolyzed as much or more cellulose than the parent CBH II enzymes in long-time cellulose hydrolysis assays and had pH/activity profiles as broad, or broader than, the parent enzymes. Generating this group of diverse, thermostable fungal CBH II chimeras is the first step in building an inventory of stable cellulases from which optimized enzyme mixtures for biomass conversion can be formulated.

biofuels | cellobiohydrolase | cellulose hydrolysis | Trichoderma reesei | CBH II

The performance of cellulase mixtures in biomass conversion processes depends on many enzyme properties including stability, product inhibition, synergy among different cellulase components, productive binding versus nonproductive adsorption and pH dependence, in addition to the cellulose substrate physical state and composition. Given the multivariate nature of cellulose hydrolysis, it is desirable to have diverse cellulases to choose from to optimize enzyme formulations for different applications and feedstocks. Recent studies have documented the superior performance of cellulases from thermophilic fungi relative to their mesophilic counterparts in laboratory scale biomass conversion processes (1, 2), where enhanced stability leads to retention of activity over longer periods of time at both moderate and elevated temperatures. Fungal cellulases are attractive because they are highly active and can be expressed in fungal hosts such as Hypocrea jecorina (anamorph Trichoderma reesei) at levels up to 40 g/L in the supernatant. Unfortunately, the set of documented thermostable fungal cellulases is small. In the case of the processive cellobiohydrolase class II (CBH II) enzymes, <10 natural thermostable gene sequences are annotated in the CAZy database (www.cazy.org). This limited number, combined with the difficulty of using directed evolution to generate diverse thermostable cellulases, motivated our application of SCHEMA structure-guided protein recombination (3) to the challenge of creating thermostable fungal CBH II enzymes.

SCHEMA has been used to create families of hundreds of active β-lactamase (4) and cytochrome P450 (5) enzyme chimeras. SCHEMA uses protein structure data to define boundaries of contiguous amino acid “blocks” that minimize (E), the library average number of amino acid sidechain contacts that are broken when the blocks are swapped among different parents. Meyer et al. (4) found that the probability that a β-lactamase chimera was folded and active was inversely related to the value of E for that sequence. The RASPP (Recombination as Shortest Path Problem) algorithm (6) was used to identify the block boundaries that minimized (E) relative to the library average number of mutations, (m) (4). More than 20% of the ~500 unique chimeras characterized from a β-lactamase collection comprised of 8 blocks from 3 parents (38 = 6,561 possible sequences) were catalytically active (4). A similar approach produced a 3-parent, 8-block cytochrome P450 chimera family containing >2,300 catalytically active enzymes (5). Chimeras from these 2 collections were characterized by high numbers of mutations, 66 and 72 amino acids on average from the closest parent, respectively. SCHEMA/RASPP thus enabled design of chimera families having significant sequence diversity and an appreciable fraction of functional members.

It has also been shown that the thermostabilities of SCHEMA chimeras can be predicted based on sequence-stability data from a small sample of the sequences (6). Linear regression modeling of thermal inactivation data for 184 cytochrome P450 chimeras showed that SCHEMA blocks made additive contributions to thermostability. More than 300 chimeras were predicted to be thermostable by this model, and all 44 that were tested were more stable than the most stable parent. It was estimated that as few as 35 thermostability measurements could be used to predict the most thermostable chimeras. Furthermore, the thermostable P450 chimeras displayed unique activity and specificity profiles, demonstrating that chimeragenesis can lead to additional useful enzyme properties. Here, we show that SCHEMA recombination of CBH II enzymes can generate chimeric cellulases that are active on phosphoric acid swollen cellulose (PASC) at high temperatures, over extended periods of time, and with broad ranges of pH.

Results

Five candidate parent genes encoding CBH II enzymes were synthesized with S. cerevisiae codon bias. All 5 contained identical N-terminal coding sequences, where residues 1–89 correspond to the cellulose binding module (CBM), flexible linker region and the 5 N-terminal residues of the H. jecorina catalytic domain. Two of the candidate CBH II enzymes, from Humicola insolens and Chaetomium thermophilum, were secreted from S. cerevisiae.
Catalytic domains contain 360, 358, and 359 amino acid residues. Parent 2, and H. jecorina, the organism most frequently used to produce cellulases for industrial applications, is much more arduous than in

Saccharomyces cerevisiae. The observed secretion of H. jecorina CBH II from S. cerevisiae (7) motivated our choice of this heterologous host. To minimize hyperglycosylation, which has been reported to reduce the activity of recombinant cellulases (8,9), we expressed the recombinant CBH II genes in a glycosylation-deficient Δkre2 S. cerevisiae strain. This strain is expected to attach smaller mannose oligomers to both N-linked and O-linked glycosylation sites than wild type strains (10), which more closely resembles the glycosylation of natively produced H. jecorina CBH II enzyme (11). The observed ∼55-kDa molecular mass of the CBH II enzyme parents can be accounted for by the ∼47-kDa molecular mass of the nonglycosylated CBH II polypeptide chains and, for the Δkre2 strain, the anticipated N- and O-linked glycan molecular mass contribution of 8-10 kDa (11). For wild-type S. cerevisiae strains that attach high mannose moieties to N-linked sites in recombinant proteins, the N-linked molecular weight contribution alone would be >10 kDa (12). As such, the observed molecular weights suggest that the recombinant CBH II enzymes do not feature hyperglycosylation at N-linked sites.

The high resolution structure of H. insolens (13) (PDB entry 1OCN) was used as a template for SCHEMA to identify contacts that could be broken upon recombination. RASPP returned 4 candidate libraries, each with (E) < 15. The candidate libraries all have lower (E) than previously constructed chimera libraries, suggesting that an acceptable fraction of folded, active chimeras could be obtained for a relatively high (m). We maximized chimera sequence diversity by selecting the block boundaries leading to the greatest (m) = 50. The blocks for this design are illustrated in Fig. 2B and detailed in Table S1.

The H. insolens CBH II catalytic domain has an α/β barrel structure in which the 8 helices define the barrel perimeter and 7 parallel β-sheets form the active site (Fig. 2A). Two extended loops form a roof over the active site, creating a tunnel through which the substrate cellulose chains pass during hydrolysis. Five of the 7 block boundaries fall between elements of secondary structure, whereas block 4 begins and ends in the middle of consecutive α-helices (Fig. 2A and B). The majority of interblock sidechain contacts occur between blocks that are adjacent in the primary structure (Fig. 2C).
A sample set of 48 chimera genes was designed as 3 sets of 16 chimeras having 5 blocks from one parent and 3 blocks from either one or both of the remaining 2 parents (Table S2); the sequences were selected to equalize the representation of each parent at each block position. The corresponding genes were synthesized and expressed.

Twenty-three of the 48 sample set S. cerevisiae concentrated culture supernatants exhibited hydrolytic activity toward PASC. These results suggest that thousands of the 6,561 possible CBH II chimera sequences encode active enzymes. The 23 active CBH II sample set chimeras show considerable sequence diversity, differing from the closest parental sequence and each other by at least 23 and 36 amino acid substitutions and as many as 54 and 123, respectively. Their average mutation level (m) is 36.

Because Meyer et al. (4) found correlations between E, m, and the probability that a chimera is folded and active, we sought to determine whether similar correlations existed for the sample set CBH II chimeras. The amount of CBH II enzyme activity in concentrated expression culture supernatants, as measured by assaying for activity on PASC, was correlated to the intensity of CBH II bands in SDS/PAGE gels (Fig. 1). As with the H. jecorina CBH II parent, activity could be detected for some CBH II chimeras with undetectable gel bands. There were no observations of CBH II chimeras presenting gel bands but lacking activity. The probability of a CBH II chimera being secreted in active form was inversely related to both E and m (Fig. 3).

Half-lives of thermal inactivation (t1/2) were measured at 63 °C for concentrated culture supernatants of the parent and active chimeric CBH II enzymes. The H. insolens, H. jecorina and C. thermophilum CBH II parent half-lives were 95, 2 and 25 min, respectively (Table 1). The active sample set chimeras exhibited a broad range of half-lives, from <1 min to >3,000. Five of the 23 active chimeras had half-lives greater than that of the most thermostable parent, H. insolens CBH II.

In attempting to construct a predictive quantitative model for CBH II chimera half-life, we experimented with 5 different linear regression data modeling algorithms (Table S3) (14). Each algorithm was used to construct a model relating the block compositions of each sample set CBH II chimera and the parents to the log(t1/2). These models produced thermostability weight values that quantified a block’s contribution to log(t1/2). For all 5 modeling algorithms, this process was repeated 1,000 times, with 2 randomly selected sequences omitted from each calculation, so that each algorithm produced 1,000 weight values for each of the 24 blocks. The mean and standard deviation (SD) were calculated for each block’s thermostability weight. The predictive accuracy of each model algorithm was assessed by measuring how well each model predicted the t1/2 values of the 2 omitted sequences. The correlation between measured and predicted values for the 1,000 algorithm iterations is the model algorithm’s cross-validation score. For all 5 models, the cross-validation scores (X-val) were less than or equal to 0.57 (Table S3), indicating that linear regression modeling could not be applied to this small, 23 chimera t1/2 dataset for quantitative CBH II chimera half-life prediction.

We therefore used linear regression modeling to qualitatively classify blocks as stabilizing, destabilizing or neutral. Each block’s impact on chimera thermostability was characterized using a scoring system that accounts for the thermostability contribution determined by each of the regression algorithms. For each algorithm, blocks with a thermostability weight value >1 SD above neutral were scored ‘‘+1,’’ blocks within 1 SD of neutral were assigned zero and blocks 1 or more SD below neutral were scored ‘‘−1.’’ A ‘‘stability score’’ for each block was obtained by summing the 1, 0, −1 stability scores from each of the 5 models. Table S4 summarizes the scores for each block. Block 1/parent 1 (B1P1), B6P3, B7P3, and B8P2 were identified as having the greatest stabilizing effects, whereas B1P3, B2P1, B3P2, B6P2, B7P1, B7P2, and B8P3 were found to be the most strongly destabilizing blocks.

We synthesized a second set of genes encoding CBH II enzyme chimeras to validate the predicted destabilizing blocks and identify cellulases more thermostable than the most stable parent. The 24 chimeras included in this validation set (Table 2) were devoid of the 7 blocks predicted to be most destabilizing and enriched in the 4 most stabilizing blocks, where represen-
A considerably broader than that of thermostable CBH II chimeras have pH/activity profiles that are optimal in the pH range 4 to 6, with activity markedly higher at higher temperatures than the parent CBH II enzymes. We have constructed a diverse family of CBH II enzymes by swapping blocks of sequence from 3 fungal CBH II enzymes. Twenty-three of 48 chimeric sequences sampled from this set were secreted in active form by S. cerevisiae, and 5 have half-lives at 63 °C that were greater than the most stable parent. Given that this 48-member sample set represents <1% of the total possible 6,561 sequences, we predict that this one collection of chimeras Liu et al. (16) report an optimal pH of 4 for C. thermophilum CBH II, we observed the optimal pH of the recombinant enzyme to be near 7. Native H. insolens CBH II has a broad pH/activity profile, with maximum activity around pH 9 and ~60% of this maximal activity at pH 4 (17). A similarly broad profile was observed for the recombinant enzyme. The HJPlus chimera has a much broader pH/activity profile than H. jecorina CBH II, showing a pH dependence similar to the other 2 parent CBH II enzymes.

Achieving activity at elevated temperature and retention of activity over extended time intervals are two primary motivations for engineering highly stable CBH II enzymes. We therefore measured the performance of thermostable CBH II chimeras in cellulose hydrolysis across a range of temperatures over a 40-h time interval. As shown in Fig. 5, all 3 thermostable chimeras were active on PASC at higher temperatures than the parent CBH II enzymes. The chimeras retained activity at 70 °C, whereas the H. jecorina CBH II did not hydrolyze PASC above 57 °C and the stable H. insolens enzyme showed no hydrolysis above 63 °C. The activity of HJPlus in long-time cellulose hydrolysis assays exceeded that of all of the parents at their respective optimal temperatures.

Discussion

We have constructed a diverse family of CBH II enzymes by swapping blocks of sequence from 3 fungal CBH II enzymes. Twenty-three of 48 chimeric sequences sampled from this set were secreted in active form by S. cerevisiae, and 5 have half-lives at 63 °C that were greater than the most stable parent. Given that this 48-member sample set represents <1% of the total possible 6,561 sequences, we predict that this one collection of chimeras

![Fig. 4](https://www.pnas.org/cgi/doi/10.1073/pnas.0901417106)
already contains hundreds of active, thermostable CBH II enzymes, a number that dwarfs the approximately twenty fungal CBH II enzymes in the CAZY database (www.cazy.org).

Our approach of using the sample set sequence-stability data to identify blocks that contribute positively to chimera thermostability was validated by finding that all 10 catalytically active chimeras in the second CBH II validation set were more thermostable than the most stable parent, a naturally-thermostable CBH II from the thermophilic fungus, H. insolens. This work has thus far generated a total of 33 new CBH II enzymes that are expressed in catalytically active form in S. cerevisiae, 15 of which are more thermostable than the most stable parent from which they were constructed. These 15 thermostable enzymes are diverse in sequence, differing from each other and their closest natural homologs at as many as 94 and 58 amino acid positions, respectively.

Analysis of the thermostabilities of CBH II chimeras in the combined sample and validation sets indicates that the 4 thermostabilizing blocks identified, B1P1, B6P3, B7P3, and B8P2, make cumulative contributions to thermal stability when present in the same chimera. Four of the 5 sample set chimeras that are more thermostable than the H. insolens CBH II contain either 2 or 3 of these stabilizing blocks (Table 1). The 10 active members of the validation set, all of which are more stable than the H. insolens enzyme, contain at least 2 stabilizing blocks, with 5 of the 6 most thermostable chimeras in this group containing either 3 or 4 stabilizing blocks. With additional sequence-stability data for model construction, it will be possible to test whether SCHEMA blocks contribute in a fully additive manner, similar to that for P450 chimeras (3).

Minimizing the number of broken contacts upon recombination (Fig. 2C) allows the blocks to be approximated as decoupled units that make independent contributions to the stability of the entire protein, thus leading to cumulative or even additive contributions to chimera thermostability. For this CBH II enzyme recombination, SCHEMA was effective in minimizing such broken contacts: whereas there are 303 total interblock contacts defined in the H. insolens parent CBH II crystal structure, the CBH II SCHEMA library design results in only 33 potential broken contacts. Given that the CBH II enzyme parents do not feature obvious structural subdomains, and only 4 of the 8 blocks (1, 5, 7, and 8) resemble compact structural units or modules (18), the low number of broken contacts demonstrates that the SCHEMA/RASPP algorithm is effective for cases in which the number of blocks appears greater than the number of structural subdivisions. As observed for β-lactamase (4) and cytochrome P450 (5) chimeras, low E values were predictive of chimera folding and activity. Although not used here, this relationship should be valuable for designing chimera sample sets that contain a high fraction of active members.

We investigated whether recombination might also lead to improvements in other enzyme properties, such as pH dependence, specific activity and the ability to hydrolyze cellulose over long time intervals and at elevated temperatures. Whereas the specific activity of H. jecorina CBH II declines sharply as pH increases above the optimum value of 5, HJPlus, created by substituting stabilizing blocks onto the most industrially relevant H. jecorina CBH II enzyme, retains significantly more activity at these higher pHs (Fig. 4). The thermostable 11113132 and 13311332 chimeras, the H. insolens and C. thermophilum CBH II cellulase parents, have even broader pH/activity profiles than HJPlus. The narrow pH/activity profile of H. jecorina CBH II has been attributed to the deprotonation of several carboxyl-carboxylate pairs, which destabilizes the protein above pH 6 (19). The substitution of parent 3 in block 7 in HJPlus changes aspartate 277 to histidine, eliminating the carboxyl-carboxylate pair between D277 and D316 (of block 8). Replacing D277 with the positively charged histidine may prevent destabilizing charge repulsion at nonacidic pH, allowing HJPlus to retain activity at higher pH than H. jecorina CBH II. The even broader pH/activity profiles of the remaining 2 thermostable chimeras and the H. insolens and C. thermophilum parent CBH II enzymes may be due to the absence of acidic residues at positions corresponding to the E57-E119 carboxyl-carboxylate pair of HJPlus and H. jecorina CBH II.

HJPlus exhibits both relatively high specific activity (Table 3) and high thermostability (Fig. S2). Fig. 5 shows that these properties lead to good performance in long-time hydrolysis experiments: HJPlus hydrolyzed cellulose at temperatures 7–15 °C higher than the parent CBH II enzymes had a significantly increased long-time activity relative to all of the parents at their temperature optima, bettering H. jecorina CBH II by a factor of 1.7. Given that the specific activity of the HJPlus chimera is less than that of the H. jecorina CBH II parent, this increased long-time activity can be attributed to the ability of the thermostable HJPlus to retain activity at optimal hydrolysis temperatures over longer reaction timer.

The other two thermostable chimeras shared HJPlus’s broad temperature range. This observation supports a positive correlation between $t_{1/2}$, at elevated temperature and maximum operating temperature, and suggests that many of the thermostable chimeras among the 6,561 CBH II chimera sequences will also be capable of degrading cellulose at elevated temperatures. Although this ability to hydrolyze the amorphous PASC substrate at elevated temperatures bodes well for the potential utility of thermostable fungal CBH II chimeras, studies with more challenging crystalline substrates and substrates containing lignin will provide a more complete assessment of this CBH II enzyme family’s relevance to biomass degradation applications.

The majority of biomass conversion processes use mixtures of fungal cellulases (primarily CBII I, cellobiohydrolase class I (CB I)), endoglucanases and β-glucosidase) to achieve high levels of cellulose hydrolysis. Generating a diverse group of thermostable CBH II enzyme chimeras is the first step in building an inventory of stable, highly active cellulases from which enzyme mixtures can be formulated and optimized for specific applications and feedstocks.

Materials and Methods

CBH II Expression Plasmid Construction. Parent and chimeric genes encoding CBH II enzymes were cloned into yeast expression vector Yep352/PK91-1uss (Fig. S2). DNA sequences encoding parent and chimeric CBH II catalytic domains were designed with S. cerevisiae codon bias, using GeneDesigner software (DNA2.0), and synthesized by DNA2.0. The CBH II catalytic domain genes were digested with XhoI and KpnI, ligated into the vector between the

![Fig. 5. Long-time cellulose hydrolysis assay results (micrograms of glucose reducing sugar equivalent per microgram of CBH II enzyme) for parents and thermostable chimeras across a range of temperatures. Error bars indicate standard errors for 3 replicates of HJPlus and H. insolens CBH II enzymes. 40-h reaction, 100 µg of enzyme per gram of PASC, 50 mM sodium acetate, pH 4.8.](image-url)
CBH II Enzyme Expression in S. cerevisiae

S. cerevisiae strain YDR483W BY4742 (MATa his3Δ1 leu2Δ2 lys2Δ1 ura3Δ1 Δkex2, ATCC No. 4014317) was made competent using the EZ Yeast II Transformation Kit (Zymo Research), transformed with plasmid DNA and plated on synthetic dropout media (20 g/L dextrose, 6.7 g/L Difco yeast nitrogen base). Colonies were picked into 5 mL overnight cultures of synthetic dextrose casamino acids (SDCAA) media (20 g/L dextrose, 6.7 g/L Difco yeast nitrogen base, 5 g/L Bacto casamino acids, 5.4 g/L Na2HPO4, 8.56 g/L NaH2PO4·H2O) supplemented with 20 μg/mL tryptophan and grown overnight at 30 °C, 250 rpm. Five-mliliter cultures were expanded into 40 mL of SDCAA in 250-mL Tunair flasks (Shelton Scientific) and shaken at 30 °C, 250 rpm for 48 h. Cultures were centrifuged, and supernatants were concentrated to 500 μL of concentrated culture supernatant or 1 leu2 lys2 MATa His6 parent and chimera CBH II constructs were made by amplifying the CBH II gene with forward primer CBH2LPCR (5′-GGTAAGGGTGTCATCGTACTT-3′) and reverse primers complementary to the appropriate CBH II gene with His6 overhangs and stop codons. PCR products were ligated, transformed, and sequenced as above.

CBH II enzyme expression in *S. cerevisiae* was induced by growing overnight cultures on synthetic media containing 2 g/L of tryptophan, 50 mL of endoglucanase (Sigma) in 50 mM sodium acetate, pH 4.8 for 1 h at 37 °C. Endoglucanase was inactivated by heating to 95 °C for 15 min, PASC was washed twice with 50 mM acetate buffer and resuspended at 10 g/L in deionized water. CBH II enzyme $t_{1/2}$ values were measured by adding concentrated CBH II expression culture supernatant to 50 mM sodium acetate, pH 4.8, at a concentration giving A520 of 0.5 as measured in the Nelson–Somogyi reducing sugar assay (20) after incubation with treated PASC as described below. The 37.5 μL CBH II enzyme/buffer mixtures were inactivated in a water bath at 63 °C. After inactivation, 37.5 μL of endoglucanase-treated PASC was added and hydrolysis was carried out for 2 h at 50 °C. Reaction supernatants were filtered through Multiscreen HTS plates (Millipore). Nelson–Somogyi assay log(A520) values, obtained using a SpectraMax microplate reader (Molecular Devices) corrected for background absorbance, were plotted versus time and CBH II enzyme half-lives obtained from linear regression, using Microsoft Excel.

For specific activity measurements, purified CBH II enzyme was added to PASC to give a final reaction volume of 75 μL of 25 mM sodium acetate, pH 4.8, with 5 g/L PASC and CBH II enzyme concentration of 3 μg of enzyme per gram of PASC. Incubation proceeded for 2 h in a 50 °C water bath and the reducing sugar concentration determined. For pH/activity profile measurements, purified CBH II enzyme was added at a concentration of 300 μg per gram of PASC in a 75-μL reaction volume. Reactions were buffered with 12.5 mM sodium citrate/12.5 mM sodium phosphate, run for 16 h at 50 °C and reducing sugar determined. Long-time cellulose hydrolysis measurements were performed with 300-μL volumes of 1 g/L treated PASC in 100 mM sodium acetate, pH 4.8, 20 mM NaCl. Purified CBH II enzyme was added at 100 μg per gram of PASC and reactions carried out in water baths for 40 h before reducing sugar determination.

ACKNOWLEDGMENTS. We thank Iogen, Inc. (Ottawa, ON) for providing the YEp352/PKG91–1-uits vector and recommending use of the Δkex2 S. cerevisiae strain. This work was supported by the Army-Industry Institute for Collaborative Biotechnologies and the Caltech Innovation Institute.

Half-Life, Specific Activity, pH-Activity and Long-Time Cellulose Hydrolysis Measurements. Phosphoric acid swollen cellulose (PASC) was prepared as described by Zhang et al. (21) To enhance CBH II enzyme activity on the substrate, PASC was preincubated at a concentration of 10 g/L with 10 mg/mL A. niger endoglucanase (Sigma) in 50 mM sodium acetate, pH 4.8 for 1 h at 37 °C. Endoglucanase was inactivated by heating to 95 °C for 15 min, PASC was washed twice with 50 mM acetate buffer and resuspended at 10 g/L in deionized water.

CBH II enzyme $t_{1/2}$ values were measured by adding concentrated CBH II expression culture supernatant to 50 mM sodium acetate, pH 4.8, at a concentration giving A520 of 0.5 as measured in the Nelson–Somogyi reducing sugar assay (20) after incubation with treated PASC as described below. The 37.5 μL CBH II enzyme/buffer mixtures were inactivated in a water bath at 63 °C. After inactivation, 37.5 μL of endoglucanase-treated PASC was added and hydrolysis was carried out for 2 h at 50 °C. Reaction supernatants were filtered through Multiscreen HTS plates (Millipore). Nelson–Somogyi assay log(A520) values, obtained using a SpectraMax microplate reader (Molecular Devices) corrected for background absorbance, were plotted versus time and CBH II enzyme half-lives obtained from linear regression, using Microsoft Excel.

For specific activity measurements, purified CBH II enzyme was added to PASC to give a final reaction volume of 75 μL of 25 mM sodium acetate, pH 4.8, with 5 g/L PASC and CBH II enzyme concentration of 3 μg of enzyme per gram of PASC. Incubation proceeded for 2 h in a 50 °C water bath and the reducing sugar concentration determined. For pH/activity profile measurements, purified CBH II enzyme was added at a concentration of 300 μg per gram of PASC in a 75-μL reaction volume. Reactions were buffered with 12.5 mM sodium citrate/12.5 mM sodium phosphate, run for 16 h at 50 °C and reducing sugar determined. Long-time cellulose hydrolysis measurements were performed with 300-μL volumes of 1 g/L treated PASC in 100 mM sodium acetate, pH 4.8, 20 mM NaCl. Purified CBH II enzyme was added at 100 μg per gram of PASC and reactions carried out in water baths for 40 h before reducing sugar determination.